Learning Machine Learning with Personal Data Helps Stakeholders Ground Advocacy Arguments in Model MechanicsYim Register, Amy J. Ko
Publikationsdatum:
Zu finden in: ICER 2020 (Seite 67 bis 78), 2020
|
![]() |
Abstracts
Machine learning systems are increasingly a part of everyday life, and often used to make critical and possibly harmful decisions that affect stakeholders of the models. Those affected need enough literacy to advocate for themselves when models make mistakes. To understand how to develop this literacy, this paper investigates three ways to teach ML concepts, using linear regression and gradient descent as an introduction to ML foundations. Those three ways include a basic Facts condition, mirroring a presentation or brochure about ML, an Impersonal condition which teaches ML using some hypothetical individual's data, and a Personal condition which teaches ML on the learner's own data in context. Next, we evaluated the effects on learners' ability to self-advocate against harmful ML models. Learners wrote hypothetical letters against poorly performing ML systems that may affect them in real-world scenarios. This study discovered that having learners learn about ML foundations with their own personal data resulted in learners better grounding their self-advocacy arguments in the mechanisms of machine learning when critiquing models in the world.
This conference paper mentions...
![]() Personen KB IB clear | Ruth E. Anderson , Rolf Biehler , Lea Budde , Austin Cory Bart , John Dewey , Michael D. Ernst , Daniel Frischemeier , Birte Heinemann , Dennis G. Kafura , Duri Long , Brian Magerko , Simone Opel , Robert Ordóñez , Seymour Papert , Paul Pham , Susanne Podworny , Carsten Schulte , Clifford A. Shaffer , Eli Tilevich , Ben Tribelhorn , Sherry Turkle , Thomas Wassong | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() Begriffe KB IB clear | AI literacy
, algorithmic bias
, ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() Books |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() Texts |
|
Citation Graph
Citation Graph(Beta-Test mit vis.js)
Timeline
1 References 
- Conceptualizing AI literacy - An exploratory review (Davy Tsz Kit Ng, Jac Ka Lok Leung, Samuel Kai Wah Chu, Maggie Shen Qiao) (2021)
Find elsewhere
Fulltext of this document
![]() | ![]() ![]() ![]() ![]() ![]() |
Search at other places 
Beat and dieses Konferenz-Paper
Beat hat Dieses Konferenz-Paper während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Es gibt bisher nur wenige Objekte im Biblionetz, die dieses Werk zitieren.
Biblionetz-History 
Biblionetz-Verweise auf 'Learning Machine Learning with Personal Data Helps Stakeholders Ground Advocacy Arguments in Model Mechanics'
Biblionetz-Verweise von 'Learning Machine Learning with Personal Data Helps Stakeholders Ground Advocacy Arguments in Model Mechanics'